【寄语】人教版七年级数学课件【精品多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。
最新数学七年级优秀课件 篇一
教学目标:
1、使学生在现实情境中理解有理数加法的意义
2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则
重点:异号两数相加的法则
教学过程:
一、讲授新课
1、同号两数相加的法则
问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作—5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)
教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(—5)+(—3)=—8(m)
师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则
教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?
学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(—3)=2(m)
师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?
学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零
教师:你能用加法法则来解释这个法则吗?
学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
二、巩固知识
课本P18例1,例2、课本P118练习1、2题
三、总结
运算的关键:先分类,再按法则运算;
运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
四、布置作业
课本P24习题1.3第1、7题。
最新七年级数学课件 篇二
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
给定的数字将被填入它所属的集合中
教学方法:
问题导向法
学习方法:
自主探究法
教学过程:
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1、有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的`展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
最新数学七年级优秀课件 篇三
5.4平移
教学目标:
1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题
2、培养学生的空间观念,学会用运动的观点分析问题。
重点:平移的概念和作图方法。
难点:平移的作图。
教学过程
一、观察图形形成印象
生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案。
观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明。
二、提出新知实践探索
平移:
(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点。
(3)连接各组对应的线段平行且相等。图形的这种变换,叫做平移变换,简称平移
探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案
引导学生找规律,发现平移特征
三、典例剖析深化巩固
例如图,(1)平移三角形ABC,使点A运动到A`,画出平移后的ΔABC
先观察探讨,再通过点的平移,线段的平移总结规律,给出定义
探究活动可以使学生更进一步了解平移
四、巩固练习
课本33页:1,2,4,5,6,7
五、小结:
在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。2利用平移的特征,作平行线,构造等量关系是接7题常用的方法。
六、作业
课本P30页习题5。4第3题
人教版七年级数学课件 篇四
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力。
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性。难点是多重符号的化简。“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义的性质及其判定的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主 m.niubb.net 要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若表示一个有理数,则的表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若互为,则,反之若,则互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
(一)
一、素质教育目标
(一)知识教学点
1.了解:互为的几何意义。
2.掌握:给出一个数能求出它的。
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题。
2.培养学生自己归纳总结规律的能力。
(三)德育渗透点
1.通过解释的几何意义,进一步渗透数形结合的思想。
2.通过求一个数的,使学生进一步认识对应、统一规律。
(四)美育渗透点
1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美。
2.通过简化一个数的符号,使学生进一步体会数学的简洁美。
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡#课件# 导语的设置,充分发挥学生的主体地位。
2.学生学法:感性认识→理性认识→练习反馈→总结。
三、重点、难点、疑点及解决办法
1.重点:求已知数的。
2.难点:根据的意义化简符号。
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片。
六、师生互动活动设计
学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈。
七、教学步骤
(一)探索新知,导入新课
1.互为的概念的引出
演示活动:要一个学生向前走5步,向后走5步。
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步。
[板书]
+5,-5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为。
[板书]2.3
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为。
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)
师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的。
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点。更形象直观地引导学生自己得出的概念。
2.理解概念
(出示投影1)
判断:(1)-5是5的()
(2)5是-5的()
(3)与互为()
(4)-5是()
学生活动:学生讨论。
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力。
师:0的是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的。
2.分别说出9,-7,0,-0.2的。
3.指出-2.4,-1.7,1各是什么数的?
4.的是什么?
学生活动:1题同桌互相订正,2、3题抢答。
【教法说明】1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为。2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是。”
[板书]a的是-a.
师:的是,可表示任意数—正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号。
提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?
提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答。
【教法说明】利用的概念化简符号是这节课的难点。这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习
(出示投影3)
1.是______________的,
2.是_____________的,
3.是_____________的,
4.是_____________的,
学生活动:思考后口答。
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略。并答出以上式子的结果。
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结。
巩固练习:
1.例题2简化-(+3)-(-4)的符号。
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练。1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解。3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度。
(三)归纳小结
师:我们这节课学习了,归纳如下:
1.________________的两个数,我们说其中一个是另一个的。
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出。
【教法说明】通过问题形式归纳出本节的重点。
(四)回顾反馈
1.-1.6是__________的,
____________的是0.3.
2.下列几对数中互为的一对为().
A.和B.与C.与
3.5的是________________;的是___________;的是________________.
4.若,则;若,则。
5.若是负数,则是___________数;若是负数,则是___________数。
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答。
教法说明
1,2题是对本节课的重点知识进行复习。3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高。
你也可以在搜索更多本站小编为你整理的其他人教版七年级数学课件【精品多篇】范文。