当前位置:首页 > 教学资源

乘法分配律教学设计方案【精品多篇】

时间:2024-11-07 11:20:48
乘法分配律教学设计方案【精品多篇】[本文共8961字]

[导读]乘法分配律教学设计方案【精品多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。

《乘法分配律》优秀教学设计 篇一

教学目标:

1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

3、发挥学生主体作用,体验探究学习的快乐。

教学重点:

指导学生探索乘法的分配律。

教学难点:

乘法分配律的应用。

教学准备:

课件、口算题、例题、练习题等。

教学策略:

本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

教学流程:

一、设疑导入

师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?

生:可以使计算简便。

师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。

二、探究发现

1、猜想。

师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

师:这道题算得怎么不如刚才的快啊?

生:它和前面的题目不一样。

师:好,我们来看一下它与前面的题目有什么不同?

生:前面的题都是乘号,这道题既有乘号还有加号。

生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

生:(10+4)×25=10×25+4×25。

师:为什么这样算哪?

生:我是根据乘法分配律算的。

师:你是怎么知道的?你知道什么是乘法分配律吗?

生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

2、验证。

师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

3、结论。

生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)

师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

(a+b)×c=a×c+b×c

师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。

三、练习应用

(生练习应用定律。)

师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

四、总结

师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

反思:

本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

一、主动探究,实现亲身经历和体验

现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

二、多向互动,注重合作与交流

在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

乘法分配律教学设计方案 篇二

设计说明

教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的 ……此处隐藏4568个字…………)

小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]

三、实践运用,巩固内化

1、“想想做做”第1题。

谈话:下面我们利用乘法分配律解决一些简单的问题。

出示“想想做做”第1题,让学生在书上填一填。

学生完成后,用课件反馈。

2、“想想做做”第2题。

你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

回答第2小题时,让学生说一说理由。

3、“想想做做”第3题。(略)

四、梳理知识,反思总结

提问:今天这节课,你有什么收获?有什么感受想对大家说?

五、布置作业

“想想做做”第4、5题。

说明

数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。

吴正宪《乘法分配律》的教学设计 篇六

《探索与发现(三)乘法分配律》教学反思

东新四小学王唯

教学内容:

小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页

教学目标:

1、经历探索的过程,发现乘法分配律,并能用字母表示。

2、会用乘法分配律进行一些简便计算。

教学重点:理解乘法分配律的特点。

教学难点:乘法分配律的正确应用。

教学过程:

一、复习回顾

(出示课件1)计算

35×2×5=35×(2×)

(60×25)×4=65×(×4)

(125×5)×8=(125×)×5

(3×4)×5×6=(×)×(×)

师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。

二、探究发现

(出现课件2)

师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?

生:我发现有两个叔叔在贴瓷砖

生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。

师:你最想知道什么问题?

生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题)师:你能估计出工人叔叔一共贴了多少块瓷砖吗?

生:我估计大约有100块瓷砖

生:我估计大约有90块瓷砖。

师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)

师:谁来向大家介绍一下自己的做法?

生:6×9+4×9(板书)

=54+36

=90

分别算出正面和侧面贴的块数,再相加,就是贴的总块数。

生:(6+4)×9(板书)

=10×9

=90(块)

因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。

师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?

生:我发现计算方法不同,但结果却是一样的。

6×9+4×9=(6+4)×9(板书)

师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?

(学生举例,教师板书)

师:这几们同学举的例子符合要求吗?请在小组中验证一下。(小组汇报)

小组1:符合要求,因为每组中两个算式都是相等的。

小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。

(板书用=连接算式)

师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。

小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。

小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法分配律。它是我们学习的关于乘法的第三个定律。

师:大家齐读一遍。

师:和同桌说一说自己对乘法分配律的理解。

师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。

(a+b)×c=a×c+b×c

师:这叫做乘法分配律

三、巩固练习:

1、计算

(80+4)×2534×72+34×28

师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。

2、判断正误

(25+7)×4=25×4×7×4()

35×9+35

=35×(9+1)

=350----()

3、填一填

(12+40)×3=×3+×3

15×(40+8)=15×+15×

78×20+22×20=(+)×20

四、总结

师:说说这节课你有什么收获?

师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

[板书设计]

探索与发现(三)

-----乘法分配律

(a+b)×c=a×c+b×c

6×9+4×9=(6+4)×9

(40+4)×25=40×25+4×25

(64+36)×42=42×64+42×36

你也可以在搜索更多本站小编为你整理的其他乘法分配律教学设计方案【精品多篇】范文。

《乘法分配律教学设计方案【精品多篇】[本文共8961字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式