
小编为你精心整理了11篇《方程的意义教学设计人教版》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《方程的意义教学设计人教版》相关的范文。
篇1:方程的意义教学设计教学内容:
人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。 教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
教学难点:
理解方程的意义,即方程两边代数式所表达的两件事情是等价的。
教学过程 一、呈现情境,建立方程
1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?
教师在天平的一边放上两袋100克的食物,另一边放一个200克的砝码,这台天平保持平衡了吗?
提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)
2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。
3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)
当学生说出275-x>200、275-x=200、275-x200,275-x>200,275-X=200,275-x72,③y+24④5x+32=47,⑤2x+3)=34,⑥6(a+2)=42
(对不是方程的式子,一定要学生从本质上解释为什么不是方程)
学完方程后。小明又列了两个式子,却不小心被墨水给弄脏了,猜猜他原来列的是不是方程?
让学生明白,不管墨迹处是什么,第一个都是方程,第二个则可能是也可能不是,可小明说,他列的第二个式子也是方程,猜一猜,他列了个什么方程?
4.看来,大家对方程又有了更深刻的认识,其实,早在三千六百多年以前,人们就对方程有了自己的认识你知道吗?
课件出示(配以录音):早在三千六百多年前,埃及人就会用方程解决数学问题了,在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料,一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
很多以前用算术方法解起来很难的问题,用方程能轻而易举地解出来。
设计意图:
动态平衡是为了加深对方程本质的理解判断题中对不是方程的式子的合理解释,进一步明晰了方程的表现形式有别于其他等式、不等式或代数式,为了让学生感知方程的多样性,防止学生把未知数狭隘地理解为一个或者狭隘地理解为z,在这一题里设计了有两个未知数的,也设计了含有未知数a、y的。
篇2:方程的意义教学设计教学目标:
1、经历从生活情境到方程模型的建构过程。
2、理解方程概念,感受方程思想。
3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。
教学过程:
一、情境创设,初建相等关系模型。
1、师出示天平图,
认识吗?
师:天平可以称出物体的质量是多少。
2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?
(左右倾斜各一幅,平衡的一幅。图略)
学生会选择图3,老师顺着学生的思路出示图3天平平衡图
图3为什么能称出两只苹果的质量?
你能用一个式子表示出天平两边物体的质量关系么?
100+100=200
图1和图2为什么不能称出两只苹果的质量呢?
你也能用一个式子表示出天平两边物体的质量关系吗?
100+100>100、100+100<500
3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。
你的小脑袋里有等式吗?说一个试试。
除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)
师:没想到,同学们对等式是这么的熟悉。
二、借助基础,拓展等式外延。
1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?
(书上四幅图略)
选一个等式说一说它表示什么意思?
天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)
2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。
3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?
突出含有未知数的等式
这些含有未知数的等式你见过吗?
生:没见过;也可能见过,如:用字母表示数中、求未知数x等。
三、进一步拓宽对等式的理解。
1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?
(师出示四幅生活情境图)
(1)铅笔盒与笔记本共20元。
(2)借出的书与剩下的书共150本。
(3)3瓶相同的色拉油,每瓶x元,共8元。
三、明确特征,归纳概念。
其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)
揭示数学上我们把含有未知数的等式叫做方程。
四、深刻领悟,挖掘内涵。
1、黑板上的其它式子为什么不是方程?
2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生 ……此处隐藏6134个字……(结合板书交流)
也就是说:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式来表示方等式和方程之间的关系吗?
例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)
三、巩固
师:同学们的图非常形象地表示出了方程和等式之间的关系,
1、这些图你能用方程来表示吗?
2、看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中的一些数量之间的关系?
如:我班一共有多少人,男生有多少人?如果把女生的人数看成X,你会用方程来表示男女生人数与全班人数之间的关系吗?
师:这里还有一些有关我们学校的信息,谁来读一读。
3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)
四、小结
学了这堂课你有什么想说的吗?你有什么想对老师说的吗?
篇10:《方程的意义》教学设计教学目标:
1、结合具体情境,理解方程的意义,会用方程表示简单的等量关系。
2、借助天平让学生理解方程及等式的意义。
3、感受方程与现实生活的密切联系,唤起学生保护珍稀动物的意识。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示)
我们应该保护这些濒临灭绝的珍稀动物,今天这节课,就以三种动物为话题,来研究其中的数学问题。
二、合作探究,获取新知。
(一)理解等式的意义。
找出白鳍豚这组资料的等量关系,用字母表示。
1、师:我们先来看白鳍豚的这组资料,你从中发现了那些信息?
1980年比2004年多300只,这句话中有几个数量?你能用一个式子表示出这三个数量之间的关系吗?让学生在练习本上写一写,进行板书。
1980年只数―2004年只数=300只
1980年只数―300只=2004年只数
2004年只数+300只=1980年只数
2、请同学们根据这三个数量中的已知数和未知数,用含有字母的式子表示出2004年只数+300只=1980年只数这个数量关系,小组进行讨论、交流。(教师进行巡视,参与讨论。)
3、分析a+300=400,等号左边表示1980年只数,等号右边也是1980年的只数,像这样表示左右两边相等的式子,我们通常简称为等式。(板书:等式)
4、借助天平来研究等式。
(出示天平)你对天平了解多少?谁给大家介绍一下?
师:你观察的真仔细,天平是一种用来称量物体质量比较精密的仪器,当指针指在标尺的中央,天平就平衡了。
师:如果左盘放10克砝码,右盘放20克砝码,天平会平衡吗?怎样用式子表示这种关系?(10<20)如何才能平衡呢?(左再放一个10克的砝码)
师:出示天平:左20克和x克,右50克,你能用一个等式表示天平左右两边的关系吗?(20+x=50)
师:我们知道一个等式可以表示出天平平衡时左右两边相等的关系,那在天平如何表示出x+300=400这个数量关系吗?(出示天平)
(二)理解方程的意义。
1、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。
师:继续看大熊猫的资料,你获得了哪些信息?根据这些信息,小组讨论以下三个问题:
(1)找出人工养殖的只数与野生的只数的关系,用文字表示出来。
(2)用含有字母的等式表示出这个关系。
(3)在天平上表示出这个等式。
小组合作探讨,汇报交流,得出:人工养殖的只数x10=野生只数
10x=1600,1600÷x=10或1600÷10=x天平左盘放10个x只,右盘放1600
只。我们通过分析它们之间的等量关系得出了等式10x=1600。
2、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。
师:继续看东北虎的资料,你获得了哪些信息?根据这些信息,你能像刚才那样提出数学问题吗?小组讨论解决,交流汇报。(1)2003年只数×3+100=2010年的只数。
(2)3×+100=1000或1000-3×=100(3)天平左盘3x和100,右盘1000。
我们通过分析它们之间的等量关系得出了等式3x+100=1000。
3、揭示方程的意义
师:刚才我们研究出这么多的等式,下面给它们分分类,怎么分呢?(含字母,不含字母)
我们把含有字母的等式,叫方程。这就是方程的意义。(板书:方程的意义)
师:同学想一想x+5是方程吗?2+3=5是方程吗?说明理由。
师:判断是不是方程,你觉得应符合什么条件?(含未知数,还必须是等式)
师:请同学们再思考:式子、等式、方程,它们之间的关系是怎样的?
三、巩固练习,加强应用。
看来同学们已经掌握了今天所学的知识,下面老师来考考你。
课件出示课本自主练习1,2,3,4。
四、回顾反思,总结提升。
通过这节课的学习,你有什么收获?
篇11:方程的意义数学教学设计教材分析
本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。
1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。
2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。
3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。
学情分析
本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。
教学目标
1、能利用天平,通过动手操作理解等式的意义。
2、结合具体实例和情景,初步理解方程的意义,会用方程表达简单的等量关系。
3、培养保护动物的意识,感受数学与生活的密切联系,提高学习数学的兴趣。
教学重点和难点
重点:方程意义的理解
难点:建立等式、方程的概念